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Directed transport by pumping of excited states
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We present the exact analytic solution for the model of directed transport induced by nonequilibrium state
occupation, introduced by Porf&ur. Phys. J. B5, 345(2002].
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I. INTRODUCTION will represent this effect by an energy parametgrwhich
effectively changes the energy difference, for transitions be-

Brownian motors are small-sized objects capable of rectitween A and A*, from € to e+ . When <0, transitions
fying thermal fluctuation§l1]. Directed transport results from from A to A* are facilitated, while forp>0 they are sup-

a combination of broken spatial symmetry with nonequilib- pressed.

rium constraints that destroy detailed balance. Here, we fo-

cus on a recently introduced simple mog2}, in which the II. ANALYTIC SOLUTION

nonequilibrium state is achieved by pumping of an excited

state. We present a streamlined version of the model, encom- Since the particles are separated by at the most one site,
passing all the key features, and derive analytical expressior®ie needs not to give the separate positiy{s) andx,(t)

for the velocity and diffusion coefficient using a general ran-of both particles. It suffices to specify the configuration

dom walk formalism3]. namely, @A, A*, or B), and thecenter of mass (t)=[x,(t)

The model consists of two interacting particles, both per-+x,(t)]/2. For technical purposes it is more convenient to
forming a hopping motion in an equipotential lattice. The specify the state of the system by considering the periodic
interaction prevents the particles from occupying the samstructure shown in Fig.(b). The coordinates of the system
site, or from being separated by more than one site. In othen this structure arer e {A,A*,B} and the cell coordinate
words, the two particles form a diatomic molecule that canThe center of mass then follows &sx, ;=1+38, . As-
be in two different states, say andB, corresponding to the suming Markovian dynamics, the probabili®, (t) to find
particles being either in nearest neighbor sites, or separatete system in stateo(|) at timet satisfies the following
by one intermediate empty site. Thegeound statesare = master equation:
separated by a potential barrier of heightThey are further

supplemented with an excited staté of the nearest neigh- d B .

bor stateA. This excited state can be reached from both i Pai=—(ka_gTkagtkaa)Pa,(t)
statesA andB. The energy difference betwednand A* will

be callede. An asymmetry is introduced in the transitions +Kg_ AP -1(t) +Kg_ APg (1)

betweerB andA*. If the transition happens by a jump of the
left particle, the barrierheight equals* e (+ and — sign,
respectively, when the transition is to or from the excited
statg. However, when the right particle makes the jump, the
barrierheight isA’ + €. Figure 1a) shows all the transitions
between the different states. The nonequilibrium condition is

+Kar—aPas (1),

d -
EPA*’l(t): _(kA*—>B+ k-AF*_>B+ kA*—»A) PA*,I(t)

generated by pumping the transitions betw@esnd A*. We +Kg_ asPei-1(t) kg aPsi() (1)
M A AN +KaasPa,(1),
h ik . A , 949 @
a

* a - o
:’)A ----- ‘ EPBJ(t):_(kB—>A+kg—>A+kB—>A"—kg—‘A")PB,|(t)
i €

+Ka_gPai(t) +Ka gPa+1(t)

+Kpe gPar 1 () +Kae _gPas 41(1).

S
ATy — L N 2N Here, k;, ., is the transition rate per unit time to go from
o @ hH stateo to statew with a jump either to the left{) or to the

x(t) right (+). In concordance with the discussion given in the

FIG. 1. (a) Schematic representation of the different states anolntrodu'ctlon, these transition rates are taken to be of the
Arrhenius type:

their transitions. For each transition, the corresponding potential
barrier height is shown(b) Periodically repeated unit cell, consist-

; ; ki _=kZ ,=e (B2A
ing of three internal states. A—B~ KB-A ,
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FIG. 2. (a) Plot of the average velocity as a function ofy for
different values ofe. (b) Plot of v as a function ofe for different
values of7. In both case&gT=1 andA=1, A'=2.

Kaas=(Kas_p) " t=e" (BT

K g=e BRA=9: | _e-BRG+I ()

ki gme BRA =9 o —em(BR8+q)

In the following we will setB=(kgT) 1=1, defining the

unity of energy.

Our main focus now is on the transport properties,

namely, on the average velocity

v=Ilim <X(t)>, (3
ot
and the diffusion coefficienD:
2\ 2
D=lim M (4)

t

t—oo
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FIG. 3. Plot of the diffusion coefficierd as a function ofe for
different values ofy. AgainkgT=1 andA=1, A'=2.

the average speed is concerned, the calculation is in fact
very simple and we reproduce it here. Since
=limy_..(a/dt)(x(t)) with (x(t))==, X, P, (t), we ob-
tain by multiplying the master equatiofi) with x, , fol-
lowed by summation oves,| that

v=(kg_atks_ a)PE—(Ka_gPi+ky P2, (5
where P§‘=IithwE|PU,|(t) is the steady state probability
to be in state o. The evolution equation forP (t)
=2,P,,(t) is obtained by summing both sides of the master
equation. The problem of finding the steady state solution is
thus reduced to an algebraic problem, i.e., finding the eigen-

vector of eigenvalue 0 of the resulting transition matrix. One
obtains

—€

Pit": e7(eA+ze(l/2)(A+é+7])+e(l/2)(A+A')

+ 2e(1/2)(s+ 7]+A’)+ 26(1/2)(A+5+A’)),

Pzt:%(e(A+ 7 4 a2 A +etn) 4 o(12)A+27+A")

(6)

+ 2e(1/2)(e+ n+A") + Ze(l/Z)(A+e+277+A')),

Pth:%(eA+2e(1/2)(A+f+ 7 4 oU2)A+A") 4 oa(12)(e+ 7+A")

+ 26(1/2)(A+e+27]+A’))

These quantities can be calculated using the general formalvhereZ is determined by normalization. Combined with Eq.

ism for random walks in periodic structures, [3]. As far as

(5), it yields the central result:

eE(l_ e?y)(l_ e(1/2)(A'—A))

v= (e(1/2)A+e(l/2)A’+e[(1/2)A+e]+e[e+(1/2)A’]+e[(1/2)A+e+7]]+e[e+ 7+(12A"] 4 9a(1/2)(e+A")

)

+ 28(1/2)(e+ 77)+ 28(1/2)(e+ 77+A'7A)+4e(l/2)(35+ 77)+4e(l/2)(35+ 7]+A’7A)+4e(1/2)(3e+27]+A'))

In the absence of pumping;=0, the steady state solution reduces to the well known Gibbsian form for the equilibrium
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distribution, and the flux vanishes,=0. The extremal values of the fluxes, on the other hand, are found in the limits of
overpopulationp— —o and underpopulatiom— o, namely:

n—®

v o= —(eM2—d'12)/(ed 4 A +AN2 1 4 B+ era)2)

n——®

v o= ef(ed2—ed2)j(ed+eBTAN2y DAt era)2 (8 +2e+A)2y gAte) ®)

Figure 2 shows the dependencevobn 7 and e for the values oA=1 andA’=2. The results are in qualitative agreement
with the numerical results presented in Ref]. The differences arise from the fact that we choose to work with the more
realistic case of a continuous time model, whereas the results i Refre obtained for a discrete time variable.

The calculation ofD is much more elaborate, and we refer to R&f. for more details. The final result is lengthy and
reproduced in the Appendix. Here we only quote the result for the diffusion coefficient in the absence of pumping:

5 e(2)(~A+9) (gh 4 g(etA12)  g(A+el2) | Dp(U2)A+E) | gle+8'12) 4 g(UAB+e+A") 4 (UD(A+26+4"))

9

(1+Zee)(eA+26(1/2)(A+e)+e(1/2)(A+A’)+2e(1/2)(e+A’)+26(1/2)(A+5+A’))
In Fig. 3 we show the dependence®fon » and e for the values ofA=1 andA’'=2.

Ill. DISCUSSION

The calculation of drift and diffusion properties for models of Brownian motors with a finite number of discrete states can
be reduced to a problem of linear algebra. The calculation of the drift velocity is particularly simple since it only requires the
knowledge of a steady state probability distribution. Many of these models can thus be solved exactly, independently of

whether or not detailed balance holds. As such, the description with discrete states has an important advantage over models
with continuous degrees of freedom, since steady state properties can usually no longer be obtained for more than one degree

of freedom in the absence of detailed balance.
APPENDIX
D= %e(llz)(—A+5)[eAlz_ eA’/Z] (eA+eA+e/2+ n4 2e(1/2)(A+e+ 7])+26(1/2)(e+ 77+A')+e(1/2)(A+A')+2e(1/2)(A+25+ )

+26(1/2)(A+6+A’)+2e(l/2)(A+26+27;+A')+2e(1/2)(26+7]+A')+e(l/2)(A+e+27]+A')]
X(Ze(2A+E+ ﬂ)/2(2+4e6+e26)+(e3A/2+ 2eA+3(e+ 7/)/2)(1+e6)+eA/2+6+ 1](4+ 8ec+ 2eA+eA+6)+e3A/2+26+277
+e(A'/2){eA+2(E+ 77)(1+ ZeE/Z)+(eA+2eA+E/2+ Ze[A+3(E+ 77)]/2)(l+e5)+2e(A+e+ 77)/2(2+ Zeel2+ Aec+ 4e3el2+ eZe)

+ef+7][4+eA(1+265/2)(2+ef)+8e5]})+e6[eA+2e(1/2)(A+e+7])+e(l/2)(A+A')+26(1/2)(6+7;+A')+2e(1/2)(A+6+277+A'):|

X

2(1+3ee+e36/2)eA+ €2 +377/2+e3A/2(1+ee/2)(1+eE)_e(A+s)/2+ 7][4+e€(8_eA)_e(6/2)(8+eA)_1%36/2]

+eA//2{ZeA+35/2+277(1+ee/Z)+eA(1+ee/2)(1+ee)+ze(A+37y)/2(ee/2+4ee+ 3e3€/2+ 9826)+eel2+ 77[_4+ ZeA+2e36/2

el -enf]

/ [ed+edtet pplR)d+er M4 2eL2)A tetn) { qAtetny 4a(12)A+3et7) | 4o(L2)A" +3et7)

X (8+e€")+ef(—8+3e) +elD(8+3ed)]—2eMIE+M(1 4 g+ e3De— g2¢)} — DAt et /2

|

+e(1/2)(A+A')+26(1/2)(A+A'+e)+e(1/2)(A+A’+25)_|_e(1/2)(A+A’+25+277)+4e(1/2)(A+A’+3e+2n)]3+ %ee[e—A/2+e—(s+A)/2

—2 sink(e)

_v][eA+2e(1/2)(A+e+1;)+e(1/2)(A+A’)+2e(1/2)(e+r;+A’)+26(1/2)(A+e+27]+A’)]/[eA+eA+e+2e(1/2)(A+e+r;)
1+ 2eU2)A tetn) L gAtetny 4a(12)A+3et7) 4 4a(UA +3et ) 4 o(12)A+A") L 9a(V2)A+A"+6) 4 o(12)(A+A"+26)

+e2)A+A +2e+27) | 4e(l/2)(A+A’+35+277)]
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