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Directed transport by pumping of excited states
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We present the exact analytic solution for the model of directed transport induced by nonequilibrium state
occupation, introduced by Porto@Eur. Phys. J. B25, 345 ~2002!#.
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I. INTRODUCTION

Brownian motors are small-sized objects capable of re
fying thermal fluctuations@1#. Directed transport results from
a combination of broken spatial symmetry with nonequil
rium constraints that destroy detailed balance. Here, we
cus on a recently introduced simple model@2#, in which the
nonequilibrium state is achieved by pumping of an exci
state. We present a streamlined version of the model, enc
passing all the key features, and derive analytical express
for the velocity and diffusion coefficient using a general ra
dom walk formalism@3#.

The model consists of two interacting particles, both p
forming a hopping motion in an equipotential lattice. T
interaction prevents the particles from occupying the sa
site, or from being separated by more than one site. In o
words, the two particles form a diatomic molecule that c
be in two different states, sayA andB, corresponding to the
particles being either in nearest neighbor sites, or separ
by one intermediate empty site. Theseground statesare
separated by a potential barrier of heightD. They are further
supplemented with an excited stateA! of the nearest neigh
bor stateA. This excited state can be reached from bo
statesA andB. The energy difference betweenA andA! will
be callede. An asymmetry is introduced in the transition
betweenB andA!. If the transition happens by a jump of th
left particle, the barrierheight equalsD6e (1 and 2 sign,
respectively, when the transition is to or from the excit
state!. However, when the right particle makes the jump, t
barrierheight isD86e. Figure 1~a! shows all the transitions
between the different states. The nonequilibrium condition
generated by pumping the transitions betweenA andA!. We

FIG. 1. ~a! Schematic representation of the different states
their transitions. For each transition, the corresponding poten
barrier height is shown.~b! Periodically repeated unit cell, consis
ing of three internal states.
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will represent this effect by an energy parameterh, which
effectively changes the energy difference, for transitions
tweenA and A!, from e to e1h. When h,0, transitions
from A to A! are facilitated, while forh.0 they are sup-
pressed.

II. ANALYTIC SOLUTION

Since the particles are separated by at the most one
one needs not to give the separate positionsx1(t) andx2(t)
of both particles. It suffices to specify the configurations,
namely, (A, A!, or B), and thecenter of mass x(t)[@x1(t)
1x2(t)#/2. For technical purposes it is more convenient
specify the state of the system by considering the perio
structure shown in Fig. 1~b!. The coordinates of the system
in this structure aresP$A,A!,B% and the cell coordinateI.
The center of mass then follows asx5xs,I5I 1 1

2 ds,B . As-
suming Markovian dynamics, the probabilityPs,I(t) to find
the system in state (s,I ) at time t satisfies the following
master equation:

]

]t
PA,I~ t !52~kA→B

2 1kA→B
1 1kA→A!!PA,I~ t !

1kB→A
1 PB,I 21~ t !1kB→A

2 PB,I~ t !

1kA!→APA!,I~ t !,

]

]t
PA!,I~ t !52~kA!→B

2
1kA!→B

1
1kA!→A!PA!,I~ t !

1kB→A!
1 PB,I 21~ t !1kB→A!

2 PB,I~ t !

1kA→A!PA,I~ t !,

~1!

]

]t
PB,I~ t !52~kB→A

2 1kB→A
1 1kB→A!

2
2kB→A!

1
!PB,I~ t !

1kA→B
1 PA,I~ t !1kA→B

2 PA,I 11~ t !

1kA!→B
1 PA!,I~ t !1kA!→B

2 PA!,I 11~ t !.

Here, ks→v
6 is the transition rate per unit time to go from

states to statev with a jump either to the left (2) or to the
right (1). In concordance with the discussion given in t
Introduction, these transition rates are taken to be of
Arrhenius type:

kA→B
6 5kB→A

6 5e2(b/2)D,

d
al
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kA→A!5~kA!→A!215e2(b/2)(e1h),

kA!→B
2

5e2(b/2)(D2e); kB→A!
1

5e2(b/2)(D1e), ~2!

kA!→B
1

5e2(b/2)(D82e); kB→A!
2

5e2(b/2)(D81e).

In the following we will setb5(kBT)2151, defining the
unity of energy.

Our main focus now is on the transport propertie
namely, on the average velocityv:

v5 lim
t→`

^x~ t !&
t

, ~3!

and the diffusion coefficientD:

D5 lim
t→`

^x~ t !2&2^x~ t !&2

t
. ~4!

These quantities can be calculated using the general for
ism for random walks in periodic structures, cf.@3#. As far as

FIG. 2. ~a! Plot of the average velocityv as a function ofh for
different values ofe. ~b! Plot of v as a function ofe for different
values ofh. In both caseskBT51 andD51, D852.
01210
,

al-

the average speedv is concerned, the calculation is in fac
very simple and we reproduce it here. Sincev
5 limt→`(]/]t)^x(t)& with ^x(t)&5(s,Ixs,I Ps,I(t), we ob-
tain by multiplying the master equation~1! with xs,I fol-
lowed by summation overs,I that

v5~kB→A
1 1kB→A!

1
!PB

st2~kA→B
2 PA

st1kA!→B
2 PA!

st
!, ~5!

where Ps
st5 limt→`( I Ps,I(t) is the steady state probabilit

to be in state s. The evolution equation forPs(t)
5( I Ps,I(t) is obtained by summing both sides of the mas
equation. The problem of finding the steady state solutio
thus reduced to an algebraic problem, i.e., finding the eig
vector of eigenvalue 0 of the resulting transition matrix. O
obtains

PA!
st

5
e2e

Z
~eD12e(1/2)(D1e1h)1e(1/2)(D1D8)

12e(1/2)(e1h1D8)12e(1/2)(D1e1D8)!,

PA
st5

1

Z
~e(D1h)12e(1/2)(D1e1h)1e(1/2)(D12h1D8)

12e(1/2)(e1h1D8)12e(1/2)(D1e12h1D8)!,
~6!

PB
st5

1

Z
~eD12e(1/2)(D1e1h)1e(1/2)(D1D8)12e(1/2)(e1h1D8)

12e(1/2)(D1e12h1D8)!,

whereZ is determined by normalization. Combined with E
~5!, it yields the central result:

FIG. 3. Plot of the diffusion coefficientD as a function ofe for
different values ofh. Again kBT51 andD51, D852.
rium
v5
ee~12eh!~12e(1/2)(D82D)!

~e(1/2)D1e(1/2)D81e[(1/2)D1e]1e[ e1(1/2)D8]1e[(1/2)D1e1h]1e[ e1h1(1/2)D8]12e(1/2)(e1D8)

12e(1/2)(e1h)12e(1/2)(e1h1D82D)14e(1/2)(3e1h)14e(1/2)(3e1h1D82D)14e(1/2)(3e12h1D8))

. ~7!

In the absence of pumping,h50, the steady state solution reduces to the well known Gibbsian form for the equilib
1-2
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distribution, and the flux vanishes,v50. The extremal values of the fluxes, on the other hand, are found in the limi
overpopulationh→2` and underpopulationh→`, namely:

v 5
h→`

2~eD/22eD8/2!/~eD1e(D1D8)/214 e(D1e1D8)/2!,

v 5
h→2`

ee~eD/22eD8/2!/~eD1e(D1D8)/212e(D1e1D8)/21e(D12e1D8)/21eD1e!. ~8!

Figure 2 shows the dependence ofv on h ande for the values ofD51 andD852. The results are in qualitative agreeme
with the numerical results presented in Ref.@2#. The differences arise from the fact that we choose to work with the m
realistic case of a continuous time model, whereas the results in Ref.@2# are obtained for a discrete time variable.

The calculation ofD is much more elaborate, and we refer to Ref.@3# for more details. The final result is lengthy an
reproduced in the Appendix. Here we only quote the result for the diffusion coefficient in the absence of pumping:

D5
e(1/2)(2D1e)~eD1e(e1D/2)1e(D1e/2)12e(1/2)(D1e)1e(e1D8/2)1e(1/2)(D1e1D8)1e(1/2)(D12e1D8)!

~112ee!~eD12e(1/2)(D1e)1e(1/2)(D1D8)12e(1/2)(e1D8)12e(1/2)(D1e1D8)!
. ~9!

In Fig. 3 we show the dependence ofD on h ande for the values ofD51 andD852.

III. DISCUSSION

The calculation of drift and diffusion properties for models of Brownian motors with a finite number of discrete stat
be reduced to a problem of linear algebra. The calculation of the drift velocity is particularly simple since it only requi
knowledge of a steady state probability distribution. Many of these models can thus be solved exactly, independ
whether or not detailed balance holds. As such, the description with discrete states has an important advantage ov
with continuous degrees of freedom, since steady state properties can usually no longer be obtained for more than o
of freedom in the absence of detailed balance.

APPENDIX

D5
1

2
e(1/2)(2D1e)@eD/22eD8/2#H ~eD1eD1e/21h12e(1/2)(D1e1h)12e(1/2)(e1h1D8)1e(1/2)(D1D8)12e(1/2)(D12e1h)

12e(1/2)(D1e1D8)12e(1/2)(D12e12h1D8)12e(1/2)(2e1h1D8)1e(1/2)(D1e12h1D8)#

3„2e(2D1e1h)/2~214ee1e2e!1~e3D/212eD13(e1h)/2!~11ee!1eD/21e1h~418ee12eD1eD1e!1e3D/212e12h

1e(D8/2)$eD12(e1h)~112ee/2!1~eD12eD1e/212e[D13(e1h)]/2!~11ee!12e(D1e1h)/2~212ee/214ee14e3e/21e2e!

1ee1h@41eD~112ee/2!~21ee!18ee#%…1ee@eD12e(1/2)(D1e1h)1e(1/2)(D1D8)12e(1/2)(e1h1D8)12e(1/2)(D1e12h1D8)#

3S 2~113ee1e3e/2!eD1 e/2 13h/21e3D/2~11ee/2!~11ee!2e(D1e)/21h@41ee~82eD!2e(e/2)~81eD!216e3e/2#

1eD8/2$2eD13e/212h~11ee/2!1eD~11ee/2!~11ee!12e(D13h)/2~ee/214ee13e3e/219e2e!1ee/21h@2412eD12e3e/2

3~81eD!1ee~2813eD!1e(e/2)~813eD!#22e(1/2)(D1h)~11ee1e(3/2)e2e2e!%22eD1e1h/2F125 coshS e

2D2sinhS e

2D
22 sinh~e!G D J Y @eD1eD1e12e(1/2)(D1e1h)12e(1/2)(D81e1h)1eD1e1h14e(1/2)(D13e1h)14e(1/2)(D813e1h)

1e(1/2)(D1D8)12e(1/2)(D1D81e)1e(1/2)(D1D812e)1e(1/2)(D1D812e12h)14e(1/2)(D1D813e12h)#31 1
2 ee@e2D/21e2(e1D)/2

2v#@eD12e(1/2)(D1e1h)1e(1/2)(D1D8)12e(1/2)(e1h1D8)12e(1/2)(D1e12h1D8)#/@eD1eD1e12e(1/2)(D1e1h)

12e(1/2)(D81e1h)1eD1e1h14e(1/2)(D13e1h)14e(1/2)(D813e1h)1e(1/2)(D1D8)12e(1/2)(D1D81e)1e(1/2)(D1D812e)

1e(1/2)(D1D812e12h)14e(1/2)(D1D813e12h)#.
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